
Audio Reporting Experimental Envelope Temperature Sensor

Brief Summary

This article describes construction and use of an inexpensive envelope temperature “gauge.” The
unit, about 6 inches square, sits on the exterior of the envelope. A digital sensor reads envelope
temperature and reports the same using an audio tone with simplified Morse code. A
microprocessor provides smart operation. Cost of electronic components is about $15. There is
no wire connection between the sensor and the basket.

Included on the Balloon Builders Journal CD are files for the assembler program, and the HEX
file that actually programs the microprocessor. The assembler program is also listed at the end
of the PDF file you are currently reading.

Hardware Overview

The photo on page 5 displays a bottom view of my unit. My unit was assembled in a small box
constructed from ¾ inch thick pinewood covered with 1/16 inch model aircraft birch plywood.
The entire unit weighs 8 ounces, about 240 grams.

The white wire is the shrink-wrapped cover to the Dallas DS18S20 digital temperature sensor.
The black round unit is the speaker. The on-off switch is next to the speaker.

The bottom surface of the unit mounts in a pouch sewn to the envelope exterior. The sensor wire
protrudes into the envelope through a small hole. The wood area around the speaker is cut out to
allow flow of air, in an effort to reduce heat buildup in the speaker area.

The photo on page 6 is a top view of the unit. A “perfboard” cover has been removed from the
electronics area and can just be seen at the bottom of the photo. Three AAA batteries power the
unit. These remain uncovered to allow cooling flow of air. The left upper hole allows the on-off
switch to be operated by a finger. The right hole is only there to permit access to the bottom of
the switch.

The lower right opening contains the electronics. All the electronics are mounted on half of a
Radio Shack 276-159B circuit board. The white connectors allow me to disconnect the board
from the speaker and temperature sensor. The battery connects using the red and green covered
homemade connectors. All connectors could be eliminated and wires directly soldered to the
board. The little wood block, next to the white three-pin connector is my sophisticated effort to
ensure the sensor connector doesn’t wobble loose.

The perfboard cover is screwed at each of four corners over the electronics area.

Below is an electronic diagram of the sensor. Note seven components. It would be difficult to
get simpler than this! However, if the speaker pulls more than 25 milliamps, replace the red
speaker connection with the switching transistor arrangement shown on the right. The connector
marked “A” on the speaker goes to the 4.5 volt connection. So a higher current draw requires
two more resistors and one common NPN transistor.

The .1 UF bypass capacitor simply ensures the battery power remains “clean.” The 4.7k-ohm
pull-up resistor keeps the data pin on the DS18S20 sensor at 4.5 volts unless the PIC
microprocessor or temperature sensor pulls the line to ground. The PIC and sensor communicate
with each other using serial data transfer based on the Maxim “1-wire” protocol. The PIC
microprocessor is a $1.00 unit that has all the smarts. The diagram shows a one-time
programmable 12C508 chip. The newer 12F508 chip is a better choice for program development
as it can be programmed more than once.

How It Works

When the unit is first turned on it sends a pair of audio notes every 10 seconds. This is to inform
the pilot the unit is functioning.

The unit continues to send a pair of audio notes until 140 degrees F is reached in the envelope.
Once this temperature is reached a five-minute timer begins. During this five minutes
temperature is reported every ten seconds as passengers are loaded and the balloon is brought to
equilibrium.

At the end of five minutes, temperature reporting slows to once a minute.

Anytime the temperature drops below 140 degrees, the sequence above repeats.

The 140-degree transition point is arbitrary. It assumes balloons rarely fly with a temperature
below 140 degrees. However, a pilot with a protracted preflight procedure could hot inflate
below 140 degrees and only exceed the transition temperature as passengers are brought
onboard.

Audio Reporting

The unit has five-degree Fahrenheit resolution. Reporting is based on modified Morse code. The
code is based on two tones:

A DAH is a longer, lower frequency tone.

A DIT is a shorter, higher frequency tone.

The tone pair, as the unit is first turned on, is a DAH-DIT, at ten-second intervals.

Numbers are reported using the following table:

Number 1 DIT
Number 2 DIT-DIT
Number 3 DIT-DIT-DIT
Number 4 DIT-DIT-DIT-DIT
Number 5 DIT-DIT-DIT-DIT-DIT
Number 6 DAH
Number 7 DAH-DAH
Number 8 DAH-DAH-DAH
Number 9 DAH-DAH-DAH-DAH
Number 0 DAH-DAH-DAH-DAH-DAH

The unit reports temperatures between 140 degrees and 255 degrees. Temperature is reported
using two or three numbers, with a time space between each number. The first number is always
a one or a two so the first number will always be a DIT or a DIT-DIT.

The second number can be a 0 through 9.

If the third number is a 0, nothing is heard, a DIT signifies a 5.

Examples:

DIT space DIT-DIT-DIT-DIT : 140 degrees—Simple, No?

DIT space DAH: 160 degrees—Again, simple, No?

DIT space DAH space DIT: 165 degrees—Same as previous, but last DIT adds 5.

DIT-DIT space DIT: 210 degrees—Again, simple, No?

DIT-DIT space DIT space DIT: 215 degrees—Same as previous, but last DIT adds 5.

DIT-DIT space DIT-DIT-DIT-DIT-DIT space DIT : 255 degrees or HIGHER

Logically, because of the temperature reporting range, anytime the second number begins with a
DAH, the temperature must be below 200 degrees and at least 160 degrees.

Outstanding Issues

This is an experimental device in its first generation. Readers certainly can identify ways to
further refine its function.

The principal issue with this design is heat. If I could develop an effective insulating container
the unit could be wholly contained within a balloon envelope. This would require a package that

prevents the electronics from exceeding about 125 degrees F during the course of a flight. The
batteries and speaker are the critical elements. The other electronic components are less
temperature sensitive. The PIC is available in an extended temperature range, good to 85
degrees C.

I chose a small speaker because I didn’t want the constant reporting to drive my passengers or
me batty. The balloon shape acts as speaker so minimal sound power is required. The computer
program could be rewritten so a piezo sounder, rather than a speaker, could be used. Doing so
would eliminate the “tone modulation.” The listener would hear DIT’s and DAH’s as a single
tone of differing length. The PIC drives the speaker with square wave tones of 500 Hz and
1200Hz. With a sounder, a single tone of differing lengths would result. My small speaker pulls
20 milliamps. Don’t exceed 25ma or the PIC current limits will be exceeded.

The PIC was programmed in Microchip Technologies assembler language. Included with this
article is a listing of the assembler program. It is thoroughly documented so the reader might
understand the program strategy. I used the PicKit1 programmer ($36), connected to a USB port
on my PC. Microchip’s MPLAB programming system is available for free download at
Microchip.com

An alternative Reporting Scenario

The microprocessor approach allows any number of reporting scenarios. Any variation in time
and temperature can be used to create a reporting method.

I haven’t developed the software yet, but the following is another possible presentation: It
assumes temperature should be reported if it is climbing or if it exceeds a safe threshold, like 240
degrees F.

The sensor monitors the temperature every 10 seconds.

If the new reading is 5 degrees higher than the old reading, temperature is sounded. Otherwise,
the unit remains quiet.

The new reading is sounded a second time 5 seconds later in case burner noise covered the first
sounding effort.

If temperature exceeds the safe threshold level, it is sounded every 10 seconds.

Other Possibilities

Readers might consider the following refinements:

Add a speech unit so the temperature is reported not as Morse code, but in a spoken language.

Add a microphone so the audio reporting doesn’t conflict with burner noise.

Add infrared reception so a common television remote control could give the unit commands.

PIC Programming Instructions

Below is a listing of the assembler file that programs the microprocessor. It is heavily
commented for those who are interested in the details. The assembler file (balloontemp.asm) on
the CD should be used for programming.

; PROGRAM balloontemp.asm 7/6/2005 by Bob LeDoux

;This program works.
;
; Performs temperature measurement using DS1820 and 12F508.
; Data from DS1820, pin 2, communicates with 12F508 GPIO,0.
; The data line to the DS1820 must be pulled high w/ 4.7K resistor.
; The tone out to a speaker is GPIO,1.

 LIST P=12F508

;Configuration:
; MCLR enabled
; Code Protection off
; Watchdog timer disabled
; Internal RC oscillator

PCL EQU 0x02
STATUS EQU 0x03
OSCAL EQU 0x05
GPIO EQU 0x06
C EQU 0

 Constant BAS_VAR=0x07

WARMUP EQU BAS_VAR+0
TEMP_F EQU BAS_VAR+1
TEMP_F_W EQU BAS_VAR+2
_N EQU BAS_VAR+3
TONE_L EQU BAS_VAR+4
TONE_P EQU BAS_VAR+5
LOOP1 EQU BAS_VAR+6
LOOP2 EQU BAS_VAR+7
LOOP3 EQU BAS_VAR+8
O_BYTE EQU BAS_VAR+9
I_BYTE EQU BAS_VAR+9
TEMP EQU BAS_VAR+10
TENS EQU BAS_VAR+10

;Option: bit 7, 1=no interrupts, bit 6, 1=no pullups,
;bit 5, 0=internal clock, bit 4, edge select,
;bit 3, 1=prescaler to WDT, bits 0-2, prescaler.

;GPIO set all all output except bit 3.
;TRIS set as low except for DS1820, bit 0.

 org 0x00
 movwf OSCAL
 movlw b'11011111'
 option ;see OPTION note above
 movlw b'00001000'
 TRIS GPIO ;set GPIO as output, except MCLR
 movlw b'00001001'
 movwf GPIO ;set speaker, MCLR high

 movlw .30 ;set at 30 for 5 minutes, sets
 movwf WARMUP ;10 second reports for 5 minutes

 goto Begin ;skip tables and subroutines

;TABLES---

 ;Sensor returns temperature in .5 degree increments.
 ;thus value of 200 means reading of 100 degress Celcius
TEMP_TABLE ;Converts sensor reading to F degrees
 addwf PCL, f
 retlw .140 ;offset 0 or 60C or 120 from sensor
 retlw .145 ;offset 1
 retlw .145 ;offset 2
 retlw .150 ;offset 3
 retlw .155 ;offset 4
 retlw .160 ;offset 5
 retlw .160 ;offset 6
 retlw .165 ;offset 7
 retlw .170 ;offset 8
 retlw .175 ;offset 9
 retlw .175 ;offset 10
 retlw .180 ;offset 11
 retlw .180 ;offset 12
 retlw .185 ;offset 13
 retlw .190 ;offset 14
 retlw .195 ;offset 15
 retlw .195 ;offset 16
 retlw .200 ;offset 17
 retlw .205 ;offset 18
 retlw .205 ;offset 19
 retlw .210 ;offset 20
 retlw .215 ;offset 21
 retlw .215 ;offset 22
 retlw .220 ;offset 23
 retlw .225 ;offset 24
 retlw .230 ;offset 25
 retlw .235 ;offset 26
 retlw .235 ;offset 27
 retlw .240 ;offset 28
 retlw .245 ;offset 29
 retlw .250 ;offset 30
 retlw .250 ;offset 31
 retlw .255 ;offset 32
 retlw .255 ;offset 33

;tables MorseCt and MorseT translate the number of 10's into tones.
;for example, assume temperature of 160 which has 6 tens. MorseCt
; will return the value ".10". MorseT will then go down 10 rows
;to the last Dah before the goto command. One Dah will be sent.

MorseCt addwf PCL, f ;Translates numbers into dits and dahs
 retlw .6 ;number 0
 retlw .4 ;number 1
 retlw .3 ;number 2
 retlw .2 ;number 3
 retlw .1 ;number 4
 retlw .0 ;number 5
 retlw .10 ;number 6
 retlw .9 ;number 7
 retlw .8 ;number 8
 retlw .7 ;number 9

MorseT ;sounds Dits and Dahs based on table MorseCt, above

 addwf PCL, f
 call Dit ;number 5, offset 0
 call Dit ;number 4, offset 1
 call Dit ;number 3, offset 2
 call Dit ;number 2, offset 3
 call Dit ;number 1, offset 4
 goto MorseRet
 call Dah ;number 0, offset 6
 call Dah ;number 9, offset 7
 call Dah ;number 8, offset 8
 call Dah ;number 7, offset 9
 call Dah ;number 6, offset 10
 goto MorseRet

;SUBROUTINES--

; Routines for "1-Wire" serial data transfers.

INIT: ;initializes DS1820
 call PIN_HI
 call PIN_LO

 movlw .70 ;enter 50 for 500 microsecond delay
 movwf LOOP1
 call DELAY_10USEC

 call PIN_HI

 movlw .50 ;enter 50 for 500 microsecond delay
 movwf LOOP1
 call DELAY_10USEC
 retlw 0

IN_BYTE: ;returns byte in w
 movlw .8 ;8 bits make a byte
 movwf _N ;_N is bit counter
 clrf I_BYTE ;this is reported temperature
IN_BYTE_1:
 call PIN_LO
 NOP
 call PIN_HI

 movlw b'00001001' ;Set pin to receive data
 tris GPIO ;from DS1820.
 NOP ;wait to allow Ds1820 to stabilize
 NOP
 NOP
 NOP
 movf GPIO, w ;move gpio pins to w, to read bit 0
 movwf TEMP ;move gpio pins to temp

 btfss TEMP, 0 ;test the data_pin; set = 0
 bcf STATUS, C ;if so clear status bit c
 btfsc TEMP, 0 ;test data-pin; clear = 1
 bsf STATUS, C ;if so set status bit c

 rrf I_BYTE, f ;rotate for next bit; carry in c
 movlw .7 ;ENTER 6 FOR 60 USEC DELAY
 movwf LOOP1
 call DELAY_10USEC

 movlw b'00001000' ;finished reading bit from DS1820
 TRIS GPIO ;allow PIC to transit to DS1820
 decfsz _N, f ;count down counter _N
 goto IN_BYTE_1 ;return for next bit
 retlw 0

OUT_BYTE: ;sends byte out the data_pin
 movlw .8 ;8 bits make a byte
 movwf _N ;_N is bit counter

OUT_BYTE_1:
 rrf O_BYTE, f ;rotate the byte, picking up bits
 btfss STATUS, C ;test determines 0 or 1 bit out
 goto OUT_0
 goto OUT_1

OUT_BYTE_2:
 decfsz _N, f ;count down counter for 8 bits
 goto OUT_BYTE_1 ;get next bit
 retlw 0

OUT_0: ;sends out a 0 bit
 call PIN_LO ;sets data_pin low
 movlw .7 ;ENTER 6 FOR 60 USEC DELAY
 movwf LOOP1
 call DELAY_10USEC
 call PIN_HI ;sets data_pin high
 goto OUT_BYTE_2

OUT_1: ;sends out a 1 bit
 call PIN_LO ;sets data_pin low
 call PIN_HI ;sets data_pin high
 movlw .7 ;ENTER 6 FOR 60 USEC DELAY
 movwf LOOP1
 call DELAY_10USEC
 goto OUT_BYTE_2

PIN_HI ;sets data_pin high
 bsf GPIO,0
 retlw 0

PIN_LO ;sets data_pin low
 bcf GPIO,0
 retlw 0

 ;Dit and Dah are same code except for timing
 ;tone is created by setting and clearing pin.
 ;this creates square wave whose frequency is
 ;determined by time high and low.

Dit
 movlw .30 ;set time of each tone swing-30
 movwf TONE_L
 movlw .254 ;each sound 254 cycles long
 movwf TONE_P
ToneC
 bsf GPIO, 1 ;tone goes out this pin
 movf TONE_L, w
 movwf LOOP1
 call DELAY_10USEC
 bcf GPIO, 1
 movf TONE_L, w

 movwf LOOP1
 call DELAY_10USEC
 decfsz TONE_P, f
 goto ToneC
 movlw .1 ;creates 1/4 second space after dit
 movwf LOOP1
 call Delay
 retlw 0

Dah
 movlw .100 ;set time of each tone swing-100
 movwf TONE_L
 movlw .150 ;each sound 150 cycles long
 movwf TONE_P

ToneC1
 bsf GPIO, 1 ;tone goes out this pin
 movf TONE_L, w
 movwf LOOP1
 call DELAY_10USEC
 bcf GPIO, 1
 movf TONE_L, w
 movwf LOOP1
 call DELAY_10USEC
 decfsz TONE_P, f
 goto ToneC1
 movlw .1 ;creates 1/4 second space after dah
 movwf LOOP1
 call Delay
 retlw 0

DELAY_10USEC: ;sets delay of 10usec for each increment of loop1

 nop
 nop
 nop
 nop
 nop
 nop
 nop
 decfsz LOOP1, f
 goto DELAY_10USEC
 retlw 0

Delay
Outer ;Loop1 sets 1/4 second per increment

 movlw .250 ;make 250 for about .25 seconds
 movwf LOOP2

Middle
 movlw .110 ;make 110 for 1 millisecond
 movwf LOOP3

Inner
 nop
 nop
 nop
 nop
 nop
 nop
 decfsz LOOP3,F
 goto Inner

 decfsz LOOP2,F
 goto Middle

 decfsz LOOP1,F
 goto Outer

 retlw 0

;MAIN PROGRAM---

Begin
 nop
 nop
 nop
 call INIT ;initialize the DS1820

 movlw 0xcc ;cch is command for 1820 to skip rom
 movwf O_BYTE
 call OUT_BYTE

 movlw 0x44 ;44h is command to read and store temperature
 movwf O_BYTE
 call OUT_BYTE

 movlw .3 ;time to read and store temperature
 movwf LOOP1
 call Delay

 call INIT ;initialize the DS1820

 movlw 0xcc ;cch is command for 1820 to skip rom
 movwf O_BYTE
 call OUT_BYTE

 movlw 0xbe ;beh is command to transmit out temperature
 movwf O_BYTE
 call OUT_BYTE

 call IN_BYTE ;read the temperature, only the 1st.

 call INIT ;initialize the DS1820

;I_BYTE now holds value of degrees Celcius times 2.

;--
 ;This section takes the DS1820 output
 ;which is celcius temperature times 2.
 ;thus 100 celcius reports out as 200
 ;binary. That number is divided by 4.
 ;Then 30 is subtracted from the result.
 ;This allows a simple table to convert
 ;celcius into F degrees, with about
 ;5 degrees F resolution. A converted
 ;value of 0 represents 140F. The table
 ;then increments to 255F.

 movf I_BYTE, w ;copy into working storage

 bcf STATUS, C ;clear C so rrf is correct
 rrf I_BYTE, f ;divide the value
 bcf STATUS, C ;clear C so rrf is correct
 rrf I_BYTE, f ;by 4

 movlw .30 ;decrement by 30 to index
 subwf I_BYTE, w ;table read to 0

 btfss STATUS, C ;C bit reports 140 degrees or less
 goto TooLow ;temp is below 140 degrees send dah dit
 call TEMP_TABLE ;temp above 140F report temp as audio

 movwf TEMP_F
 movwf TEMP_F_W
;--
 ;This section breaks the F temp
 ;down into three bytes. The first
 ;is the number of 100's, the second
 ;is the number of 10's, and the
 ;third is the remaining five's.

 clrf TENS ;clear counter for number of tens

 movlw .200 ;check for no 100's
 subwf TEMP_F_W, f
 btfss STATUS, C ;neg result =200+, pos =100+
 goto OneHund ;result was 100+
 call Dit ;200 means two dits of audio
 call Dit
 movlw .3 ;creates space before audio tens
 movwf LOOP1
 call Delay

 movlw .200
 subwf TEMP_F, f ;subtract 200 for 10's calculation
 goto TenPro

OneHund
 call Dit ;100 means one dit
 movlw .3 ;creates space before audio tens
 movwf LOOP1
 call Delay

 movlw .100
 subwf TEMP_F, f ;subtract 100 for 10's calculation

TenPro ;determine # of 10's by sucessive subtraction
 movlw .10 ; 10 is unit of decrement
 subwf TEMP_F, f ;subtract 10 from number = 0 to 99
 btfss STATUS, C ;negative result means too much sub
 goto NegRes
 incf TENS, f ;positive result means another 10's
 goto TenPro ;repeat subtracting 10's
NegRes
 addwf TEMP_F, f ; neg result means 1 too many 10's taken
 ;so add back 10
 nop

;--

TestSt ;This section translates hundreds, tens,
 ;and fives into morse code calls for dits
 ;and dahs. MorseT sends the dits and
 ;dahs. Relative addressing, set by

 ;MorseCt sets the number of dits and
 ;dahs for the numbers. The Five
 ;is sent as a dit for five and
 ;no sound for zero.

 ;100's were sent in preceding section
 movf TENS, w ;Number of 10's
 call MorseCt ;get index for number of 10's
 nop
 goto MorseT ;apply index to sound send table

MorseRet
 movlw .3 ;creates space before fives report
 movwf LOOP1
 call Delay

TestFive
 movlw .5 ;Test for fives
 subwf TEMP_F, f ;subtract 5 from remaining number 0 through 9
 btfss STATUS, C ;test of 0 or 1 fives
 goto Wait ;no fives exist
 call Dit ;sound Dit because five exists
 goto Wait ;yes this instruction is redundant.

Wait ;5 minutes of 10 second reporting then 1 minute

 decfsz WARMUP, f ;Warmup counts down for 5 minutes
 goto DlayS ;go to 10 second delay
 incf WARMUP, f ;warmup is 0, add 1 to keep from starting over
 movlw .240 ;Count for 1 minute delay
 movwf LOOP1
 call Delay
 goto Begin

DlayS
 movlw .40 ;wait 10 seconds before next report.
 movwf LOOP1
 call Delay
 goto Begin

TooLow ;less than 140 degrees, sound Dah-Dit
 movlw .40 ;repeat every 10 seconds
 movwf LOOP1
 nop
 call Dah
 call Dit
 movlw .40
 movwf LOOP1
 call Delay
 goto Begin

 END

